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Introduction
• Suppose that we are given 50 pictures1 of tigers, 50 pictures of dolphins, and 50
picture of monkeys.

• From the given pictures, we learn how tigers, dolphins and monkeys look like.

• Now, given a new picture, we want to know whether it is tiger, dolphin, or a
monkey.

A tiger,
a dolphin,
or a monkey?

1All photographs are taken from the Internet.
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Pattern classification problem setup

• Let X be set of all possible inputs and Y be the set of all classes.

• We are given a set of training examples (or training data) x1, x2, . . . , xm ∈ X .

• Each data point xi has been labeled to belong a certain class. Let
y1, y2, . . . , ym ∈ Y be the class labels corresponding to x1, x2, . . . , xm.

– For example, consider Y = {−1,+1}. The data point xi belongs to class
“+1” if yi = 1, and class “−1” if yi = −1.

• Let f : X → Y be a classifier or decision function, which should do the following:

– f(xi) = yi for i = 1, . . . ,m, or, if not possible, maximizes the number of
training examples satisfying f(xi) = yi.

– for a new data x ∈ X , predict its class by f(x).

• Goal: learn a good classifier from the training data {(xi, yi)}
m
i=1.
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Binary Classification by the Support Vector Machine (SVM)

• Consider the binary classification case. Let Y = {−1,+1}.

• Consider a simple decision function

f(x) = sign(wTx+ b)

where w ∈ R
n and b ∈ R. This classifier is known as the SVM.

• Problem 1: given {(xi, yi)}
m
i=1, find (w, b) such that

yi = sign(wTxi + b), i = 1, . . . ,m. (∗)

• Eq. (∗) is equivalent to

wTxi + b > 0, if yi = 1, wTxi + b < 0, if yi = −1,

for i = 1, . . . ,m. Or, we can write

yi(w
Txi + b) > 0, i = 1, . . . ,m.
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• Problem 1 can be written as

find w, b

s.t. yi(w
Txi + b) > 0, i = 1, . . . ,m,

which is an LP feasibility problem.

• Geometrically, the problem is to find a hyperplane H = {x | wTx+ b = 0} that
separates the data {xi | yi = 1} from {xi | yi = −1}.
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A Robust SVM Formulation

• Suppose that there are uncertainties in {xi}
m
i=1, say, due to noise and modeling

errors.

• Under such cases, the classifier design in Problem 1 is not robust.

• Consider the spherical uncertainty model:

x̃i = xi + ei, ‖ei‖2 ≤ ρ,

for i = 1, . . . ,m, where xi now denotes the “nominal” data point; x̃i the “true”
data point; ei the corresponding uncertainty vector; ρ the uncertainty level.

5



• We wish to maximize the uncertainty level while still separating the data.

• Problem 2:

max
w,b,ρ

ρ

s.t. yi(w
T (xi + ei) + b) ≥ 0, for all ‖ei‖2 ≤ ρ, i = 1, . . . ,m.
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• A recap of problem 2:

max
w,b,ρ

ρ

s.t. yi(w
T (xi + ei) + b) ≥ 0, for all ‖ei‖2 ≤ ρ, i = 1, . . . ,m.

• By the Cauchy-Schwarz inequality, we have

inf
‖ei‖2≤ρ

yi(w
T (xi + ei) + b) ≥ 0 ⇐⇒ yi(w

Txi + b)− ρ‖w‖2 ≥ 0.

• Problem 2 is homogeneous—if (w⋆, b⋆) is a solution, then (α · w⋆, α · b⋆), for
any α > 0, is also a solution.

• Assume w.l.o.g. that ρ‖w‖2 = 1. Problem 2 can be reformulated as

min
w,b

‖w‖22

s.t. yi(w
Txi + b) ≥ 1, i = 1, . . . ,m.
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Alternative (and classical) Interpretation

• Define hyperplanes H+ = {x|wTx+ b = 1} and H− = {x|wTx+ b = −1}.

• The distance between H+ and H− is 2/‖w‖2.

• Problem 2 is identical to that of maximizing the distance between the parallel
hyperplanes H+ and H−.
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The Non-Separable Data Case

• A given training data set {(xi, yi)}
m
i=1 is not always separable; i.e., there does

not exist a hyperplane that separates {xi | yi = −1} and {xi | yi = 1}.

• As a compromise, a minimum “loss” should be sought.
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A Soft Margin SVM Formulation

• Let ψ : R → {0, 1} be a step loss function:

ψ(x) =

{

0, x ≤ 0
1, x > 0.

• Problem 3 (an ℓ0-norm-like soft margin SVM):

min
w,b

‖w‖22 + λ ·

m
∑

i=1

ψ(1− yi(w
Txi + b))

for some constant λ > 0.

– we design an SVM whose number of class-violated data points is small.

– the problem is also robust against mislabeled data points.

– the problem has a sparse opt. flavor.

• Problem 3 is nonconvex, owing to ψ (the same problem as in ℓ0 norm).
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• Like sparse opt., a compromise is to approximate ψ by a more manageable
function. As an example, consider the hinge loss function:

h(x) =

{

0, x ≤ 0
x, x > 0.

h is convex. Also, note that h(x) = max{0, x}.

• ℓ1-norm-like soft margin SVM:

min
w,b

‖w‖22 + λ ·
m
∑

i=1

max{0, 1− yi(w
Txi + b)}.

The problem above can be reformulated as an SOCP (or convex QP):

min
w,b,ξ

‖w‖22 + λ ·
m
∑

i=1

max{0, ξi}

s.t. ξi ≥ 0, ξi ≥ 1− yi(w
Txi + b), i = 1, . . . ,m.

Note: the above problem is the classical SVM formulation.
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Variations of SVM Formulations

• One may consider other approximate functions for ψ (e.g., the logistic regression

loss log(1 + e−yi(w
Txi+b)) ).

• One may also modify the uncertainty model.

– For example, consider an interval uncertainty ‖ei‖∞ ≤ ρ.

– The resulting SVM problem (with ℓ1-norm-like soft margin):

min
w,b

‖w‖1 + λ ·
m
∑

i=1

max{0, 1− yi(w
Txi + b)}.

– Alternative interpretation: Since ‖w‖1 approximates ‖w‖0, the above SVM
problem has a flavor of choosing the smallest of elements (or features) to
perform classification.
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Nonlinear SVM

• SVM restricts itself to the use of linear decision regions.

– pros: “easy” to optimize.
– cons: there are many cases where linear decision regions are not adequate.

• A possible remedy is to introduce a nonlinear mapping φ(x) to map data into a
different space, and then construct a linear classifier in that space.
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• Nonlinear SVM problem

min
w,b,ξ

‖w‖22 + λ ·
m
∑

i=1

ξi

s.t. yi(w
Tφ(xi) + b) ≥ 1− ξi, ξi ≥ 0, i = 1, . . . ,m.

where φ : Rn → R
l is a predefined nonlinear mapping.

• This problem is still an SOCP, though a nonlinear mapping is applied to data xi.

• In practice, the dimension l of φ(x) can be very large or even infinite. This can
cause significant problems in storing data in memory and solving the SOCP.
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The Representer Theorem

• The representer theorem [Shawe-Taylor and N. Cristianini’04] states that there
is an optimal solution w of the nonlinear SVM problem such that

w =
m
∑

i=1

αiφ(xi)

for some α ∈ R
m.

• The representer thm. suggests that w ∈ R
l lies in some low dimensional space

spanned by {φ(xi)}
m
i=1, though the dimension l could be huge or even infinite.

• The nonlinear SVM problem is transformed to

min
w,b,α,ξ

‖w‖22 + λ ·
∑m

i=1 ξi

s.t. yi(w
Tφ(xi) + b) ≥ 1− ξi, ξi ≥ 0, i = 1, . . . ,m,

w =
∑m

i=1αiφ(xi).

15



The Kernel Trick

• By direct substitution w, the nonlinear SVM problem can further be rewritten as

min
b,α,ξ

αTQα+ λ ·
∑m

i=1 ξi

s.t. yi(
∑m

j=1αjQij + b) ≥ 1− ξi, ξi ≥ 0, i = 1, . . . ,m,

where Q ∈ S
m
+ with Qij = φ(xi)

Tφ(xj).

• To obtain Q, we do not need φ(xi) explicitly. We only need the inner products
φ(xi)

Tφ(xj).

• There is no need to explicitly define the transform φ(x). Instead, we specify the
so-called kernel function K(x, x′) = φ(x)Tφ(x′).

• Popular choice of kernel:

K(x, x′) = exp(−δ‖x− x′‖2) (Radial basis function)

K(x, x′) = (xTx′/a+ b)d (Polynomial kernel)
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The Decision Function under the Kernel Trick

• The decision function is written as

f(x) = sign
(

(w⋆)Tx+ b⋆
)

= sign (
∑m

i=1α
⋆
iK(x, xi) + b⋆) .

• The decision function is again specified by the kernel function K(x, x′) only.
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A toy example

• Six data points: (−3,−3), (0, 1), (1,−1) are of class −1,
and (−1.5,−1.5), (2, 2), (0, 3) are of class 1.

• Nonlinear SVM with regularization λ = 0.5.

• Radical basis function with δ = 0.2.

• The black line is the decision boundary.
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Maximum-Ratio Separating Ellipsoids (MRSEs)

• SVM employs linear decision regions.

• One can also consider ellipsoidal decision regions.
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• Consider a K-class classification problem with Y = {1, . . . ,K}.

• Define the ellipsoidal set as E(u, P ) = {x | (x− u)TP (x− u) ≤ 1}, where u is
the center and P � 0.

• For each class k ∈ Y, the objective is to find an ellipsoid E(uk, Pk) and a scaled
ellipsoid E(uk, Pk/ρk) with ρk ≥ 1 such that

{

xi ∈ E(uk, Pk), if yi = k,

xi /∈ E(uk, Pk/ρk), if yi 6= k.
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• The scaling factor ρk should be maximized, as ρk can be considered as the
margin between class k and all other classes.

• The MRSE optimization problem:

max
Pk,uk,ρk

ρk + λ1 log detPk

s.t. (xi − uk)
TPk(xi − uk) ≤ 1, if yi = k,

(xi − uk)
TPk(xi − uk) ≥ ρk, if yi 6= k,

ρk ≥ 1,

Pk � 0,

for k = 1, . . . , K, where a regularization λ1 log detPk with λ1 > 0 is added to
the objective function to ensure that the ellipsoid is non-degenerate, i.e., Pk ≻ 0.

• If the optimal ρk satisfies ρk ≥ 1, then the training data of class k can be
perfectly separated from those of other classes.
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• The MRSE problem is not convex, but can be transformed to a convex problem
by a technique called homogeneous embedding.

max
Φk,ρk

ρk + λ1 log detΦ11

s.t. zTi Φkzi ≤ 1, if yi = k,

zTi Φkzi ≥ ρk, if yi 6= k,

Φk =

[

Φ11 φ12
φT12 φ22

]

� 0,

Φk � 0,

where zi = [xTi , 1]
T .

• P ⋆
k and u⋆k can be recovered by

P ⋆
k = Φ⋆

11/(1− δ⋆), u⋆k = −(Φ⋆
11)

−1φ⋆12, δ⋆ = φ⋆22 − (φ⋆12)
T (Φ⋆

11)
−1φ⋆12.

22



• For the case of non-separate data, the same soft margin formulation in SVM
can be used:

max
Φk,ρk,ξ

ρk + λ1 log detΦ11 − λ2
∑

iξi

s.t. zTi Φkzi ≤ 1 + ξi, if yi = k,

zTi Φkzi ≥ ρk − ξi, if yi 6= k,

Φk =

[

Φ11 φ12
φT12 φ22

]

,

Φk � 0,

γi ≥ 0, for all i,

where λ2 > 0 is some positive regularization parameter.
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Classification Rule

• Suppose in the training phase, we have solved the MRSE problem for each
k ∈ {1, . . . , K}.

• Given a new data x, define the score of class k as

sk =
(x− u⋆k)

TP ⋆
k (x− u⋆k)

√

ρ⋆k
.

• The score sk measures how closed x is to class k.

• Choose the class that has the minimum score:

k̂ = arg min
k=1,...,K

sk.
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